Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
iScience ; 25(6): 104415, 2022 Jun 17.
Article in English | MEDLINE | ID: covidwho-1851360

ABSTRACT

COVID-19 outbreaks have crushed our healthcare systems, which requires clinical guidance for the healthcare following the outbreaks. We conducted retrospective cohort studies with Pearson's pattern-based analysis of clinical parameters of 248 hospitalized patients with COVID-19. We found that dysregulated neutrophil densities were correlated with hospitalization duration before death (p = 0.000066, r = -0.45 for % neutrophil; p = 0.0001, r = -0.47 for neutrophil count). As such, high neutrophil densities were associated with mortality (p = 4.23 × 10-31 for % neutrophil; p = 4.14 × 10-27 for neutrophil count). These findings were further illustrated by a representative "second week crash" pattern and validated by an independent cohort (p = 5.98 × 10-11 for % neutrophil; p = 1.65 × 10-7 for neutrophil count). By contrast, low aspartate aminotransferase (AST) or lactate dehydrogenase (LDH) levels were correlated with quick recovery (p ≤ 0.00005). Collectively, these correlational at-admission findings may provide healthcare guidance for patients with COVID-19 in the absence of targeted therapy.

2.
Eur Radiol ; 32(7): 4760-4770, 2022 Jul.
Article in English | MEDLINE | ID: covidwho-1653447

ABSTRACT

OBJECTIVE: To develop a dynamic 3D radiomics analysis method using artificial intelligence technique for automatically assessing four disease stages (i.e., early, progressive, peak, and absorption stages) of COVID-19 patients on CT images. METHODS: The dynamic 3D radiomics analysis method was composed of three AI algorithms (the lung segmentation, lesion segmentation, and stage-assessing AI algorithms) that were trained and tested on 313,767 CT images from 520 COVID-19 patients. This proposed method used 3D lung lesion that was segmented by the lung and lesion segmentation algorithms to extract radiomics features, and then combined with clinical metadata to assess the possible stage of COVID-19 patients using stage-assessing algorithm. Area under the receiver operating characteristic curve (AUC), accuracy, sensitivity, and specificity were used to evaluate diagnostic performance. RESULTS: Of 520 patients, 66 patients (mean age, 57 years ± 15 [standard deviation]; 35 women), including 203 CT scans, were tested. The dynamic 3D radiomics analysis method used 30 features, including 27 radiomics features and 3 clinical features to assess the possible disease stage of COVID-19 with an accuracy of 90%. For the prediction of each stage, the AUC of stage 1 was 0.965 (95% CI: 0.934, 0.997), AUC of stage 2 was 0.958 (95% CI: 0.931, 0.984), AUC of stage 3 was 0.998 (95% CI: 0.994, 1.000), and AUC of stage 4 was 0.975 (95% CI: 0.956, 0.994). CONCLUSION: With high diagnostic performance, the dynamic 3D radiomics analysis using artificial intelligence could represent a potential tool for helping hospitals make appropriate resource allocations and follow-up of treatment response. KEY POINTS: • The AI segmentation algorithms were able to accurately segment the lung and lesion of COVID-19 patients of different stages. • The dynamic 3D radiomics analysis method successfully extracted the radiomics features from the 3D lung lesion. • The stage-assessing AI algorithm combining with clinical metadata was able to assess the four stages with an accuracy of 90%, a macro-average AUC of 0.975.


Subject(s)
COVID-19 , Artificial Intelligence , Female , Humans , Lung/diagnostic imaging , Middle Aged , ROC Curve , Retrospective Studies , Tomography, X-Ray Computed/methods
3.
Front Med (Lausanne) ; 8: 651556, 2021.
Article in English | MEDLINE | ID: covidwho-1295655

ABSTRACT

Objectives: Both coronavirus disease 2019 (COVID-19) pneumonia and influenza A (H1N1) pneumonia are highly contagious diseases. We aimed to characterize initial computed tomography (CT) and clinical features and to develop a model for differentiating COVID-19 pneumonia from H1N1 pneumonia. Methods: In total, we enrolled 291 patients with COVID-19 pneumonia from January 20 to February 13, 2020, and 97 patients with H1N1 pneumonia from May 24, 2009, to January 29, 2010 from two hospitals. Patients were randomly grouped into a primary cohort and a validation cohort using a seven-to-three ratio, and their clinicoradiologic data on admission were compared. The clinicoradiologic features were optimized by the least absolute shrinkage and selection operator (LASSO) logistic regression analysis to generate a model for differential diagnosis. Receiver operating characteristic (ROC) curves were plotted for assessing the performance of the model in the primary and validation cohorts. Results: The COVID-19 pneumonia mainly presented a peripheral distribution pattern (262/291, 90.0%); in contrast, H1N1 pneumonia most commonly presented a peribronchovascular distribution pattern (52/97, 53.6%). In LASSO logistic regression, peripheral distribution patterns, older age, low-grade fever, and slightly elevated aspartate aminotransferase (AST) were associated with COVID-19 pneumonia, whereas, a peribronchovascular distribution pattern, centrilobular nodule or tree-in-bud sign, consolidation, bronchial wall thickening or bronchiectasis, younger age, hyperpyrexia, and a higher level of AST were associated with H1N1 pneumonia. For the primary and validation cohorts, the LASSO model containing above eight clinicoradiologic features yielded an area under curve (AUC) of 0.963 and 0.943, with sensitivity of 89.7 and 86.2%, specificity of 89.7 and 89.7%, and accuracy of 89.7 and 87.1%, respectively. Conclusions: Combination of distribution pattern and category of pulmonary opacity on chest CT with clinical features facilitates the differentiation of COVID-19 pneumonia from H1N1 pneumonia.

4.
Curr Neuropharmacol ; 19(1): 92-96, 2021.
Article in English | MEDLINE | ID: covidwho-1154160

ABSTRACT

The pandemic novel coronavirus disease (COVID-19) has become a global concern in which the respiratory system is not the only one involved. Previous researches have presented the common clinical manifestations including respiratory symptoms (i.e., fever and cough), fatigue and myalgia. However, there is limited evidence for neurological and psychological influences of SARS-CoV-2. In this review, we discuss the common neurological manifestations of COVID-19 including acute cerebrovascular disease (i.e., cerebral hemorrhage) and muscle ache. Possible viral transmission to the nervous system may occur via circulation, an upper nasal transcribrial route and/or conjunctival route. Moreover, we cannot ignore the psychological influence on the public, medical staff and confirmed patients. Dealing with public psychological barriers and performing psychological crisis intervention are an important part of public health interventions.


Subject(s)
COVID-19/physiopathology , Central Nervous System Viral Diseases/physiopathology , Cerebrovascular Disorders/physiopathology , Myalgia/physiopathology , Nervous System Diseases/physiopathology , Blood-Brain Barrier , COVID-19/psychology , COVID-19/transmission , Central Nervous System Viral Diseases/psychology , Central Nervous System Viral Diseases/transmission , Cerebral Hemorrhage/physiopathology , Conjunctiva , Dizziness/physiopathology , Ethmoid Bone , Headache/physiopathology , Health Personnel/psychology , Humans , Nervous System Diseases/psychology , SARS-CoV-2
5.
Diagn Interv Radiol ; 27(3): 350-353, 2021 May.
Article in English | MEDLINE | ID: covidwho-1112835

ABSTRACT

During the coronavirus disease 2019 (COVID-19) pandemic period, container computed tomography (CT) scanners were developed and used for the first time in China to perform CT examinations for patients with clinically mild to moderate COVID-19 who did not need to be hospitalized for comprehensive treatment, but needed to be isolated in Fangcang shelter hospitals (also known as makeshift hospitals) to receive some supportive treatment. The container CT is a multidetector CT scanner installed within a radiation-protected stand-alone container (a detachable lead shielding room) that is deployed outside the makeshift hospital buildings. The container CT approach provided various medical institutions with the solution not only for rapid CT installation and high adaptability to site environments, but also for significantly minimizing the risk of cross-infection between radiological personnel and patients during CT examination in the pandemic. In this article, we described the typical setup of a container CT and how it worked for chest CT examinations in Wuhan city, the epicenter of COVID-19 outbreak.


Subject(s)
COVID-19/diagnostic imaging , Emergency Service, Hospital , Lung/diagnostic imaging , Multidetector Computed Tomography/instrumentation , Multidetector Computed Tomography/methods , Tomography Scanners, X-Ray Computed , China , Humans , Pandemics , SARS-CoV-2
6.
Diagn Interv Imaging ; 102(2): 69-75, 2021 Feb.
Article in English | MEDLINE | ID: covidwho-967744

ABSTRACT

With the rapid spread of COVID-19 worldwide, early detection and efficient isolation of suspected patients are especially important to prevent the transmission. Although nucleic acid testing of SARS-CoV-2 is still the gold standard for diagnosis, there are well-recognized early-detection problems including time-consuming in the diagnosis process, noticeable false-negative rate in the early stage and lacking nucleic acid testing kits in some areas. Therefore, effective and rational applications of imaging technologies are critical in aiding the screen and helping the diagnosis of suspected patients. Currently, chest computed tomography is recommended as the first-line imaging test for detecting COVID-19 pneumonia, which could allow not only early detection of the typical chest manifestations, but also timely estimation of the disease severity and therapeutic effects. In addition, other radiological methods including chest X-ray, magnetic resonance imaging, and positron emission computed tomography also show significant advantages in the detection of COVID-19 pneumonia. This review summarizes the applications of radiology and nuclear medicine in detecting and diagnosing COVID-19. It highlights the importance for these technologies to curb the rapid transmission during the pandemic, considering findings from special groups such as children and pregnant women.


Subject(s)
COVID-19/diagnostic imaging , COVID-19/prevention & control , COVID-19/transmission , Patient Identification Systems , Artificial Intelligence , Child , Early Diagnosis , Female , Humans , Magnetic Resonance Imaging , Male , Mass Screening , Positron-Emission Tomography , Pregnancy , Risk Factors , Tomography, X-Ray Computed
7.
J Alzheimers Dis ; 77(1): 67-73, 2020.
Article in English | MEDLINE | ID: covidwho-721452

ABSTRACT

BACKGROUND: Facing the novel coronavirus disease 2019 (COVID-19), most vulnerable individuals are seniors, especially those with comorbidities. More attention needs to been paid to the COVID-19 patients with Alzheimer's disease (AD), which is the top age-related neurodegenerative disease. OBJECTIVE: Since it is unclear whether AD patients are prone to COVID-19 infection and progression to severe stages, we report for the first time a retrospective analysis of the clinical characteristics of AD patients with COVID-19 pneumonia. METHODS: We conducted a retrospective cohort study of the clinical data of 19 AD patients with COVID-19 pneumonia, compared with 23 non-AD COVID-19 patients admitted at the same time to our hospital. Demographic, clinical, laboratory, radiological, and treatment data were collected and analyzed. RESULTS: Between AD patients and non-AD patients with COVID-19 pneumonia, the pneumonia severity was not significantly different. AD patients had a higher clustering onset than non-AD patients. The median duration from symptom onset to hospitalization were shorter in AD patients than non-AD patients, indicating the former were sent to the hospital by their family or from nursing home earlier than the later. The median duration from hospitalization to discharge seemed shorter in AD patients than non-AD patients. Dementia patients seemed less likely to report fatigue. It is noticed that more AD patients might have pericardial effusion than the non-AD patients. CONCLUSION: AD patients with COVID-19 were in milder conditions with a better prognosis than non-AD patients. AD patients who had adequate access to healthcare showed resilience to COVID-19 with shorter hospital stays.


Subject(s)
Alzheimer Disease/complications , Alzheimer Disease/psychology , Coronavirus Infections/complications , Coronavirus Infections/psychology , Pneumonia, Viral/complications , Pneumonia, Viral/psychology , Resilience, Psychological , Aged , Aged, 80 and over , COVID-19 , Cluster Analysis , Cohort Studies , Disease Progression , Fatigue/etiology , Fatigue/psychology , Female , Humans , Length of Stay , Male , Middle Aged , Pandemics , Patient Discharge/statistics & numerical data , Pleural Effusion/epidemiology , Pleural Effusion/etiology , Pneumonia/complications , Pneumonia/therapy , Prognosis
8.
Ther Adv Chronic Dis ; 11: 2040622320949423, 2020.
Article in English | MEDLINE | ID: covidwho-721275

ABSTRACT

Elderly populations with underlying chronic diseases are more vulnerable to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and have higher mortality. Parkinson's disease (PD) is a neurodegenerative disease that occurs more often in elderly people. Currently, little is known about whether patients with PD are more susceptible to novel coronavirus disease 2019 (COVID-19) and whether the treatment of PD would affect the management of COVID-19 or vice versa. Here, we report a case of a PD patient with severe COVID-19 pneumonia in Wuhan, China. After diagnosis of COVID-19, this PD patient had worsening of motor symptoms, complicated with acute hypoxemic respiratory failure, urinary tract infection, and acute encephalopathy. In addition to treatment for COVID-19 and urinary tract infection, we adjusted anti-PD medicine by stepwise increasing of dose, resulting in better control of her mobility symptoms and non-motor symptoms.

9.
IEEE Access ; - (8):118869-118883, 2020.
Article | ELSEVIER | ID: covidwho-705593

ABSTRACT

An outbreak of a novel coronavirus disease (i.e., COVID-19) has been recorded in Wuhan, China since late December 2019, which subsequently became pandemic around the world. Although COVID-19 is an acutely treated disease, it can also be fatal with a risk of fatality of 4.03% in China and the highest of 13.04% in Algeria and 12.67% Italy (as of 8th April 2020). The onset of serious illness may result in death as a consequence of substantial alveolar damage and progressive respiratory failure. Although laboratory testing, e.g., using reverse transcription polymerase chain reaction (RT-PCR), is the golden standard for clinical diagnosis, the tests may produce false negatives. Moreover, under the pandemic situation, shortage of RT-PCR testing resources may also delay the following clinical decision and treatment. Under such circumstances, chest CT imaging has become a valuable tool for both diagnosis and prognosis of COVID-19 patients. In this study, we propose a weakly supervised deep learning strategy for detecting and classifying COVID-19 infection from CT images. The proposed method can minimise the requirements of manual labelling of CT images but still be able to obtain accurate infection detection and distinguish COVID-19 from non-COVID-19 cases. Based on the promising results obtained qualitatively and quantitatively, we can envisage a wide deployment of our developed technique in large-scale clinical studies.

SELECTION OF CITATIONS
SEARCH DETAIL